If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7c+3=2c^2
We move all terms to the left:
7c+3-(2c^2)=0
determiningTheFunctionDomain -2c^2+7c+3=0
a = -2; b = 7; c = +3;
Δ = b2-4ac
Δ = 72-4·(-2)·3
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{73}}{2*-2}=\frac{-7-\sqrt{73}}{-4} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{73}}{2*-2}=\frac{-7+\sqrt{73}}{-4} $
| 5=6b^2+7b | | 3j+6.3=-2.4 | | 6s^2+37s+56=0 | | 9x-15-(7x-8)=13 | | 3/7x=-1/9= | | 3(2e+33=-3 | | 15x+6=28x+12 | | 2(B+5)=3(b-2)+23 | | X^2+1.2x=0.64 | | 3x+3x+4x-18=180 | | 20n-7=5n+8 | | 3e-1.4=-5.6 | | 161=23-w | | 103=258-x | | (9g)=(9g) | | 5u+25=-9(u-9) | | 2(y+8)=7y-34 | | A+4=3h+6 | | 5x-5=-3x+1 | | 3x-4+2x=(x-6) | | 6+6+x+11=30 | | (8x+5)(5x-9)=0 | | (8+5)(5x-9)=0 | | 39-6e=3 | | -4(6x+2.5)=-34 | | 8u-72=-5u+19 | | (8x+12)+x=180 | | 5+4=s | | 3x+41+7x-11=180 | | -8=5h+7 | | (5x-10)+45=180 | | (5z-7)+23=180 |